Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4027
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHUNIA, SUSHILen_US
dc.contributor.authorSINGH, ANUPAM KUMARen_US
dc.date.accessioned2019-09-09T11:38:48Z
dc.date.available2019-09-09T11:38:48Z
dc.date.issued2019-03en_US
dc.identifier.citationJournal of Group Theory, 22(2), 231-251.en_US
dc.identifier.issn1433-5883en_US
dc.identifier.issn1435-4446en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4027-
dc.identifier.urihttps://doi.org/10.1515/jgth-2018-0036en_US
dc.description.abstractLet G be a group. Two elements x,y∈G are said to be in the same z-class if their centralizers in G are conjugate within G. Consider F a perfect field of characteristic ≠2, which has a non-trivial Galois automorphism of order 2. Further, suppose that the fixed field F0 has the property that it has only finitely many field extensions of any finite degree. In this paper, we prove that the number of z-classes in the unitary group over such fields is finite. Further, we count the number of z-classes in the finite unitary group Un(q), and prove that this number is the same as that of GLn(q) when q>n.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectConjugacy classesen_US
dc.subjectCentralizersen_US
dc.subjectUnitary groupsen_US
dc.subjectLusztig theoryen_US
dc.subjectn-dimensional complexen_US
dc.subject2019en_US
dc.titleConjugacy classes of centralizers in unitary groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Group Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.