Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4120
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SK, REJAUL | en_US |
dc.contributor.author | DESHPANDE, APARNA | en_US |
dc.date.accessioned | 2019-09-27T06:03:40Z | |
dc.date.available | 2019-09-27T06:03:40Z | |
dc.date.issued | 2019-06 | en_US |
dc.identifier.citation | Molecular Systems Design & Engineering, 4(3), 471-483. | en_US |
dc.identifier.issn | 2058-9689 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4120 | - |
dc.identifier.uri | https://doi.org/10.1039/C9ME00014C | en_US |
dc.description.abstract | Metal phthalocyanine molecules with their inherent versatility call for an exploration of their fundamental properties when anchored on conducting substrates for designing new applications. In this article we present low temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS) measurements of copper phthalocyanine (CuPc) on noble metal Au(111), semimetal Bi(111), Dirac material graphene, and topological insulator surface Bi2Se3. We discuss in detail how the self-assembly of CuPc varies due to the nature of the substrate. STS measurements enable us to better understand the local electronic properties of the molecule-substrate interface. This insight provides key guidelines for using CuPc towards interface engineering for applications and for unraveling new phenomena therein. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.subject | Topological Insulators | en_US |
dc.subject | Copper Phthalocyanine | en_US |
dc.subject | Electronic-Properties | en_US |
dc.subject | Interface | en_US |
dc.subject | Transport | en_US |
dc.subject | Torque | en_US |
dc.subject | Scale | en_US |
dc.subject | 2019 | en_US |
dc.title | Unveiling the emergence of functional materials with STM: metal phthalocyanine on surface architectures | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | Molecular Systems Design & Engineering | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.