Please use this identifier to cite or link to this item:
Title: Estimation of the total sub-debris ablation from point-scale ablation data on a debris-covered glacier
Authors: Shah, Sunil Singh
Nainwal, Harish Chandra
Shankar, R.
Dept. of Earth and Climate Science
Keywords: Debris-covered glaciers
Glacier mass balance
Supraglacial debris
Issue Date: Oct-2019
Publisher: Cambridge University Press
Citation: Journal of Glaciology, 65(253), 759-769.
Abstract: Glaciological ablation is computed from point-scale data at a few ablation stakes that are usually regressed as a function of elevation and averaged over the area-elevation distribution of a glacier. This method is contingent on a tight control of elevation on local ablation. However, in debris-covered glaciers, systematic and random spatial variations of debris thickness modify the ablation rates. We propose and test a method to compute sub-debris ablation where stake data are interpolated as a function of debris-thickness alone and averaged over the debris-thickness distribution at different parts of the glacier. We apply this method on Satopanth Glacier located in Central Himalaya utilising ~1000 ablation measurements obtained from a network of up to 56 stakes during 2015–2017. The estimated mean sub-debris ablation ranges between 1.5±0.2 to 1.7±0.3 cm d−1. We show that the debris-thickness-dependent regression describes the spatial variability of the sub-debris ablation better than the elevation dependent regression. The uncertainties in ablation estimates due to the corresponding uncertainties in the measurement of ablation and debris-thickness distribution, and those due to interpolation procedures are estimated using Monte Carlo methods. Possible biases due to a finite number of stakes used are also investigated.
ISSN: 0022-1430
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.