Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4212
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDubey, Umesh, Ven_US
dc.contributor.authorMALLICK, VIVEK MOHANen_US
dc.date.accessioned2019-11-29T12:01:06Z
dc.date.available2019-11-29T12:01:06Z
dc.date.issued2020-01en_US
dc.identifier.citationJournal of Algebra, 541, 174-218.en_US
dc.identifier.issn0021-8693en_US
dc.identifier.issn1090-266Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4212-
dc.identifier.urihttps://doi.org/10.1016/j.jalgebra.2019.08.034en_US
dc.description.abstractThe Eilenberg-Moore construction for modules over a differential graded monad is used to study a question of Balmer regarding existence of an exact adjoint pair representing an exact monad. A Bousfield-like localization for differential graded categories is realized as a special case of this construction using Drinfeld quotients. As applications, we study some example coming from G-equivariant triangulated categories and twisted derived categories.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectDifferential graded categoriesen_US
dc.subjectMonadsen_US
dc.subjectTriangulated categoriesen_US
dc.subjectEquivariant categoriesen_US
dc.subjectLocalizationen_US
dc.subjectTwisted derived categoriesen_US
dc.subjectTOC-NOV-2019en_US
dc.subject2020en_US
dc.subject2020en_US
dc.titleOn the differential graded Eilenberg-Moore constructionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Algebraen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.