Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJADHAV, ASHWINIen_US
dc.contributor.authorGUPTA, KRITIen_US
dc.contributor.authorNINAWE, PRANAYen_US
dc.contributor.authorBALLAV, NIRMALYAen_US
dc.date.accessioned2019-11-29T12:01:06Z
dc.date.available2019-11-29T12:01:06Z
dc.date.issued2020-02en_US
dc.identifier.citationAngewandte Chemie International Edition, 59(6), 2215-2219.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4215-
dc.identifier.urihttps://doi.org/10.1002/anie.201910625en_US
dc.description.abstractIn this work, we have synthesized nanocomposites made up of a metal–organic framework (MOF) and conducting polymers by polymerization of specialty monomers such as pyrrole (Py) and 3,4‐ethylenedioxythiophene (EDOT) in the voids of a stable and biporous Zr‐based MOF (UiO‐66). FTIR and Raman data confirmed the presence of polypyrrole (PPy) and poly3,4‐ethylenedioxythiophene (PEDOT) in UiO‐66‐PPy and UiO‐66‐PEDOT nanocomposites, respectively, and PXRD data revealed successful retention of the structure of the MOF. HRTEM images showed successful incorporation of polymer fibers inside the voids of the framework. Owing to the intrinsic biporosity of UiO‐66, polymer chains were observed to selectively occupy only one of the voids. This resulted in a remarkable enhancement (million‐fold) of the electrical conductivity while the nanocomposites retain 60–70 % of the porosity of the original MOF. These semiconducting yet significantly porous MOF nanocomposite systems exhibited ultralow thermal conductivity. Enhanced electrical conductivity with lowered thermal conductivity could qualify such MOF nanocomposites for thermoelectric applications.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectConducting Polymersen_US
dc.subjectElectrical Conductivityen_US
dc.subjectMetal-Organic Frameworksen_US
dc.subjectNanocompositesen_US
dc.subjectThermal Conductivityen_US
dc.subjectTOC-NOV-2019en_US
dc.subject2020en_US
dc.titleImparting Multifunctionality by Utilizing Biporosity in a Zirconium-Based Metal-Organic Frameworken_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleAngewandte Chemie International Editionen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.