Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4278
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFall, Biraneen_US
dc.contributor.authorPRAKASH, PRABHATen_US
dc.contributor.authorGau, Michael R.en_US
dc.contributor.authorWunder, Stephanie L.en_US
dc.contributor.authorVENKATNATHAN, ARUNen_US
dc.contributor.authorZdilla, Michael J.en_US
dc.date.accessioned2019-12-24T12:19:30Z
dc.date.available2019-12-24T12:19:30Z
dc.date.issued2019-09en_US
dc.identifier.citationChemistry of Materials, 31(21), 8850-8863.en_US
dc.identifier.issn0897-4756en_US
dc.identifier.issn1520-5002en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4278-
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.9b02853en_US
dc.description.abstractSodium perchlorate (NaClO4) crystallizes with adiponitrile (ADN) as a 1:3 solvate to produce (ADN)(3) NaClO4, a solid electrolyte for sodium ion conduction. The solid possesses high thermal stability (up to 150 degrees C) and the ability to be melt-cast (T-m = 81 degrees C). The pressed solid has a high ionic conductivity of 2.2 x 10(-4) S cm(-1) at room temperature with a low activation barrier for ion conduction of 22 kJ mol(-1). The high conductivity is the result of low-affinity ion-conduction channels in the bulk based on the X-ray crystal structure, and by low grain-boundary resistance and possibly a grain-boundary percolating network due to a fluidlike nanoliquid layer between the grains, observable by scanning electron microscopy and differential scanning calorimetry. When the liquid nanolayer is rinsed away or removed by excessive drying, the bulk room temperature ionic conductivity is 4 x 10(-5) S cm(-1), activation energy for ionic conduction for an organic solid is 37 kJ mol(-1), and the sodium ion transference number is 0.71. Scanning electron microscopy and classical molecular dynamics simulations suggest that these cocrystals form a fluid layer of ADN at the surface, which facilitates the Na+ ion migration between the grains. Density functional theory calculations are consistent with the possibility of ion conduction via a solvent-anion coordinated transition state through vacancy defects in the three symmetry-equivalent ion channels along separate directions, suggesting the possibility of ionic conductivity in three dimensions.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectHigh-Voltage Electrolytesen_US
dc.subjectSolid-Electrolyteen_US
dc.subjectElectrochemical-Behavioren_US
dc.subjectOrganic Electrolyteen_US
dc.subjectSolvation Structureen_US
dc.subjectMolecular-Dynamicsen_US
dc.subjectRecent Progressen_US
dc.subjectLithiumen_US
dc.subjectAdiponitrileen_US
dc.subjectPerformanceen_US
dc.subject2019en_US
dc.titleExperimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyteen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleChemistry of Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.