Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4279
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | GANGULY, JYOTIRMOY | en_US |
dc.contributor.author | SPALLONE, STEVEN | en_US |
dc.date.accessioned | 2019-12-24T12:19:30Z | - |
dc.date.available | 2019-12-24T12:19:30Z | - |
dc.date.issued | 2020-02 | en_US |
dc.identifier.citation | Journal of Algebra, 544, 29-46. | en_US |
dc.identifier.issn | 0021-8693 | en_US |
dc.identifier.issn | 1090-266X | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4279 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jalgebra.2019.09.025 | en_US |
dc.description.abstract | A real representation ( )pi of a finite group may be regarded as a homomorphism to an orthogonal group O(V). For symmetric groups S-n, alternating groups A(n), and products S-n x S-n' of symmetric groups, we give criteria for whether it lifts to the double cover Pin(V) of O(V), in terms of character values. From these criteria we compute the second Stiefel-Whitney classes of these representations. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Symmetric groups | en_US |
dc.subject | Representation theory | en_US |
dc.subject | Spinoriality | en_US |
dc.subject | Stiefel-Whitney class | en_US |
dc.subject | Spin structure | en_US |
dc.subject | Alternating groups | en_US |
dc.subject | TOC-DEC-2019 | en_US |
dc.subject | 2020 | en_US |
dc.title | Spinorial representations of symmetric groups | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Algebra | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.