Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4279
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGANGULY, JYOTIRMOYen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2019-12-24T12:19:30Z-
dc.date.available2019-12-24T12:19:30Z-
dc.date.issued2020-02en_US
dc.identifier.citationJournal of Algebra, 544, 29-46.en_US
dc.identifier.issn0021-8693en_US
dc.identifier.issn1090-266Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4279-
dc.identifier.urihttps://doi.org/10.1016/j.jalgebra.2019.09.025en_US
dc.description.abstractA real representation ( )pi of a finite group may be regarded as a homomorphism to an orthogonal group O(V). For symmetric groups S-n, alternating groups A(n), and products S-n x S-n' of symmetric groups, we give criteria for whether it lifts to the double cover Pin(V) of O(V), in terms of character values. From these criteria we compute the second Stiefel-Whitney classes of these representations.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectSymmetric groupsen_US
dc.subjectRepresentation theoryen_US
dc.subjectSpinorialityen_US
dc.subjectStiefel-Whitney classen_US
dc.subjectSpin structureen_US
dc.subjectAlternating groupsen_US
dc.subjectTOC-DEC-2019en_US
dc.subject2020en_US
dc.titleSpinorial representations of symmetric groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Algebraen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.