Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNualart, Daviden_US
dc.contributor.authorTILVA, ABHISHEKen_US
dc.date.accessioned2020-01-22T10:58:16Z
dc.date.available2020-01-22T10:58:16Z
dc.date.issued2020-01en_US
dc.identifier.citationStochastic Analysis and Applications,38(4).en_US
dc.identifier.issn0736-2994en_US
dc.identifier.issn1532-9356en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4365-
dc.identifier.urihttps://doi.org/10.1080/07362994.2019.1711118en_US
dc.description.abstractLet be zero mean, mean-square continuous, stationary, Gaussian random field with covariance function and let such that G is square integrable with respect to the standard Gaussian measure and is of Hermite rank d. The Breuer-Major theorem in it's continuous setting gives that, if then the finite dimensional distributions of converge to that of a scaled Brownian motion as Here we give a proof for the case when is a random vector field. We also give a proof for the functional convergence in of Z(s) to hold under the condition that for some p > 2, where gamma(m) denotes the standard Gaussian measure on and we derive expressions for the asymptotic variance of the second chaos component in the Wiener chaos expansion of Z(s)(1).en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectBreuer-Major theoremen_US
dc.subjectFunctional limit theoremen_US
dc.subjectWiener chaos expansionsen_US
dc.subjectTOC-JAN-2020en_US
dc.subject2020en_US
dc.titleContinuous Breuer-Major theorem for vector valued fieldsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleStochastic Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.