Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatt, Bhavyaen_US
dc.contributor.authorChander, Manish Ramen_US
dc.contributor.authorPATIL, RAJen_US
dc.contributor.authorMishra, Ruchiraen_US
dc.contributor.authorNahar, Shloken_US
dc.contributor.authorSingh, Tejinder P.en_US
dc.date.accessioned2020-02-07T05:54:08Z
dc.date.available2020-02-07T05:54:08Z
dc.date.issued2020-02en_US
dc.identifier.citationZeitschrift Fur Naturforschung A: A Journal of Physical Sciences, 75(2), 131-141.en_US
dc.identifier.issn0932-0784en_US
dc.identifier.issn1865-7109en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4401-
dc.identifier.urihttps://doi.org/10.1515/zna-2019-0251en_US
dc.description.abstractThe measurement problem and the absence of macroscopic superposition are two foundational problems of quantum mechanics today. One possible solution is to consider the Ghirardi-Rimini-Weber (GRW) model of spontaneous localisation. Here, we describe how spontaneous localisation modifies the path integral formulation of density matrix evolution in quantum mechanics. We provide two new pedagogical derivations of the GRW propagator. We then show how the von Neumann equation and the Liouville equation for the density matrix arise in the quantum and classical limit, respectively, from the GRW path integral.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectPath Integralsen_US
dc.subjectQuantum Theoryen_US
dc.subjectSpontaneous Localisationen_US
dc.subjectTOC-FEB-2020en_US
dc.subject2020en_US
dc.titlePath Integrals, Spontaneous Localisation, and the Classical Limiten_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleZeitschrift Fur Naturforschung A: A Journal of Physical Sciencesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.