Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Debarunen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2020-02-11T10:36:27Z
dc.date.available2020-02-11T10:36:27Z
dc.date.issued2019-05en_US
dc.identifier.citationJournal of Algebraic Combinatorics, 49(3),229-265.en_US
dc.identifier.issn0925-9899en_US
dc.identifier.issn1572-9192en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4409-
dc.identifier.urihttps://doi.org/10.1007/s10801-018-0842-2en_US
dc.description.abstractIn Ayyer et al. (J Comb Theory Ser A 150:208-232, 2017), the authors characterize the partitions of n whose corresponding representations of S-n have nontrivial determinant. The present paper extends this work to all irreducible finite Coxeter groups W. Namely, given a nontrivial multiplicative character omega of W, we give a closed formula for the number of irreducible representations of W with determinant omega. For Coxeter groups of type B-n and D-n, this is accomplished by characterizing the bipartitions associated to such representations.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCoxeter groupsen_US
dc.subjectHyperoctahedralen_US
dc.subject2-Core towersen_US
dc.subjectSpecht modulesen_US
dc.subjectCore and quotient of partitionsen_US
dc.subjectDeterminant of representationsen_US
dc.subjectRepresentation theory of symmetric groupen_US
dc.subject2019en_US
dc.titleDeterminants of representations of Coxeter groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Algebraic Combinatoricsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.