Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4418
Title: | Colloidal Synthesis, Optical Properties, and Hole Transport Layer Applications of Cu2BaSnS4 (CBTS) Nanocrystals |
Authors: | CHAKRABORTY, RAYAN Sim, Kyu Min Shrivastava, Megha Adarsh, K. V. Chung, Dae Sung NAG, ANGSHUMAN Dept. of Chemistry |
Keywords: | Metal sulfides Cu2BaSnS4 nanocrystals Colloidal semiconductor nanocrystals Ultrafast carrier dynamics Hole transport layer Photodiode 2019 |
Issue Date: | Apr-2019 |
Publisher: | American Chemical Society |
Citation: | ACS Applied Energy Materials, 2(5), 3049-3055. |
Abstract: | Cu2BaSnS4 (CBTS) is an emerging earth-abundant and environmentally benign semiconductor. However, there has been no prior report of colloidal CBTS nanocrystals. Here we developed a colloidal synthesis of CBTS nanocrystals by rational design. Photophysical properties of these nanocrystals are elucidated using photoluminescence and ultrafast transient absorption spectroscopy. Finally, thin films of CBTS nanocrystals grown at room temperature are used as the hole transport layer (HTL) in an organic photodiode yielding a high peak specific detectivity (>3.2 × 1012 Jones) with low noise equivalent power (9.20 × 10–14 W Hz0.5). These results suggest that our colloidal CBTS nanocrystals have potential for optoelectronic applications. |
URI: | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4418 https://doi.org/10.1021/acsaem.9b00473 |
ISSN: | 2574-0962 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.