Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4449
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorBORAH, DIGANTAen_US
dc.contributor.authorCHAUDHURI, CHITRABHANUen_US
dc.date.accessioned2020-02-26T06:40:40Z
dc.date.available2020-02-26T06:40:40Z
dc.date.issued2020-12en_US
dc.identifier.citationMathematische Zeitschrift, 296, (3-4), 1287–1329.en_US
dc.identifier.issn0025-5874en_US
dc.identifier.issn1432-1823en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4449
dc.identifier.urihttps://doi.org/10.1007/s00209-020-02480-1en_US
dc.description.abstractWe compute an asymptotic expression for the Arakelov self-intersection number of the relative dualizing sheaf of Edixhoven’s minimal regular model for the modular curve X0(p2) over Q. The computation of the self-intersection numbers are used to prove an effective version of the Bogolomov conjecture for the semi-stable models of modular curves X0(p2) and obtain a bound on the stable Faltings height for those curves in a companion article (Banerjee and Chaudhuri in Isr J Math, 2020).en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectArakelov theoryen_US
dc.subjectHeightsen_US
dc.subjectEisenstein seriesen_US
dc.subject2020en_US
dc.subjectTOC-MAR-2020en_US
dc.subject2020-MAR-WEEK1en_US
dc.titleArakelov self-intersection numbers of minimal regular models of modular curves X0(p2)en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleMathematische Zeitschriften_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.