Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4456
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lemaire, Bertrand | en_US |
dc.contributor.author | MISHRA, MANISH | en_US |
dc.date.accessioned | 2020-02-26T06:40:41Z | |
dc.date.available | 2020-02-26T06:40:41Z | |
dc.date.issued | 2020-03 | en_US |
dc.identifier.citation | Compositio Mathematica, 156(3), 533-603. | en_US |
dc.identifier.issn | 0010-437X | en_US |
dc.identifier.issn | 1570-5846 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4456 | - |
dc.identifier.uri | https://doi.org/10.1112/S0010437X19007838 | en_US |
dc.description.abstract | Let F be a non-Archimedean local field, G a connected reductive group defined and split over F, and T a maximal F-split torus in G. Let chi(0) be a depth-zero character of the maximal compact subgroup T of T(F). This gives by inflation a character rho of an Iwahori subgroup J subset of T of G(F). From Roche [Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Ec. Norm. Super. (4) 31 (1998), 361-413], chi(0) defines a reductive F-split group (G) over tilde' whose connected component G' is an endoscopic group of G, and there is an isomorphism of C-algebras H(G(F), rho) -> H((G) over tilde'(F), 1(J)) where H(G(F), rho) is the Hecke algebra of compactly supported p(-1) spherical functions on G(F) and J' is an Iwahori subgroup of G'(F). This isomorphism gives by restriction an injective morphism zeta : Z(G(F), rho) -> Z(G' (F), 1(J')) between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to zeta realizes the transfer (matching of strongly G-regular semi-simple orbital integrals). If char(F) - p > 0, our result is unconditional only if p is large enough. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.subject | Hecke algebra isomorphisms | en_US |
dc.subject | Geometric transfer | en_US |
dc.subject | Local data | en_US |
dc.subject | TOC-FEB-2020 | en_US |
dc.subject | 2020 | en_US |
dc.title | Matching of orbital integrals (transfer) and Roche Hecke algebra isomorphisms | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Compositio Mathematica | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.