Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLemaire, Bertranden_US
dc.contributor.authorMISHRA, MANISHen_US
dc.date.accessioned2020-02-26T06:40:41Z
dc.date.available2020-02-26T06:40:41Z
dc.date.issued2020-03en_US
dc.identifier.citationCompositio Mathematica, 156(3), 533-603.en_US
dc.identifier.issn0010-437Xen_US
dc.identifier.issn1570-5846en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4456-
dc.identifier.urihttps://doi.org/10.1112/S0010437X19007838en_US
dc.description.abstractLet F be a non-Archimedean local field, G a connected reductive group defined and split over F, and T a maximal F-split torus in G. Let chi(0) be a depth-zero character of the maximal compact subgroup T of T(F). This gives by inflation a character rho of an Iwahori subgroup J subset of T of G(F). From Roche [Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Ec. Norm. Super. (4) 31 (1998), 361-413], chi(0) defines a reductive F-split group (G) over tilde' whose connected component G' is an endoscopic group of G, and there is an isomorphism of C-algebras H(G(F), rho) -> H((G) over tilde'(F), 1(J)) where H(G(F), rho) is the Hecke algebra of compactly supported p(-1) spherical functions on G(F) and J' is an Iwahori subgroup of G'(F). This isomorphism gives by restriction an injective morphism zeta : Z(G(F), rho) -> Z(G' (F), 1(J')) between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to zeta realizes the transfer (matching of strongly G-regular semi-simple orbital integrals). If char(F) - p > 0, our result is unconditional only if p is large enough.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectHecke algebra isomorphismsen_US
dc.subjectGeometric transferen_US
dc.subjectLocal dataen_US
dc.subjectTOC-FEB-2020en_US
dc.subject2020en_US
dc.titleMatching of orbital integrals (transfer) and Roche Hecke algebra isomorphismsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCompositio Mathematicaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.