Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4499
Title: Classifying and constraining local four photon and four graviton S-matrices
Authors: Chowdhury, Subham Dutta
Gadde, Abhijit
GOPALKA, TUSHAR
Halder, Indranil
Janagal, Lavneet
Minwalla, Shiraz
Dept. of Physics
Keywords: Classical Theories of Gravity
Scattering Amplitudes
Conformal Field Theory
Effective Field Theories
TOC-MAR-2020
2020
2020-MAR-WEEK3
Issue Date: Feb-2020
Publisher: Springer Nature
Citation: Journal of High Energy Physics, 2020(2).
Abstract: We study the space of all kinematically allowed four photon and four graviton S-matrices, polynomial in scattering momenta. We demonstrate that this space is the permutation invariant sector of a module over the ring of polynomials of the Mandelstam invariants s, t and u. We construct these modules for every value of the spacetime dimension D, and so explicitly count and parameterize the most general four photon and four graviton S-matrix at any given derivative order. We also explicitly list the local Lagrangians that give rise to these S-matrices. We then conjecture that the Regge growth of S-matrices in all physically acceptable classical theories is bounded by s2 at fixed t. A four parameter subset of the polynomial photon S-matrices constructed above satisfies this Regge criterion. For gravitons, on the other hand, no polynomial addition to the Einstein S-matrix obeys this bound for D ≤ 6. For D ≥ 7 there is a single six derivative polynomial Lagrangian consistent with our conjectured Regge growth bound. Our conjecture thus implies that the Einstein four graviton S-matrix does not admit any physically acceptable polynomial modifications for D ≤ 6. A preliminary analysis also suggests that every finite sum of pole exchange contributions to four graviton scattering also violates our conjectured Regge growth bound, at least when D ≤ 6, even when the exchanged particles have low spin.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4499
https://doi.org/10.1007/JHEP02(2020)114
ISSN: 1029-8479
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.