Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Junen_US
dc.contributor.authorWan, Daqingen_US
dc.contributor.authorKAIPA, KRISHNAen_US
dc.date.accessioned2020-03-27T04:13:39Z
dc.date.available2020-03-27T04:13:39Z
dc.date.issued2020-04en_US
dc.identifier.citationIEEE Transactions on Information Theory, 66(4), 2392 – 2401.en_US
dc.identifier.issn0018-9448en_US
dc.identifier.issn0018-9448en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4507-
dc.identifier.urihttps://doi.org/10.1109/TIT.2019.2940962en_US
dc.description.abstractProjective Reed-Solomon (PRS) codes are Reed-Solomon codes of the maximum possible length $q+1$ . The classification of deep holes –received words with maximum possible error distance– for PRS codes is an important and difficult problem. In this paper, we use algebraic methods to explicitly construct three classes of deep holes for PRS codes. We show that these three classes completely classify all deep holes of PRS codes with redundancy four. Previously, the deep hole classification was only known for PRS codes with redundancy at most three.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectProjective Reed-Solomonen_US
dc.subjectReed-Solomon codesen_US
dc.subjectTOC-MAR-2020en_US
dc.subject2020en_US
dc.subject2020-MAR-WEEK4en_US
dc.titleDeep Holes of Projective Reed-Solomon Codesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleIEEE Transactions on Information Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.