Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorDey, Arijiten_US
dc.contributor.authorPODDAR, MAINAKen_US
dc.date.accessioned2020-03-27T04:13:39Z
dc.date.available2020-03-27T04:13:39Z
dc.date.issued2020-12en_US
dc.identifier.citationTransformation Groups, 25(4), 1009–1035.en_US
dc.identifier.issn1531-586Xen_US
dc.identifier.issn1083-4362en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4508
dc.identifier.urihttps://doi.org/10.1007/s00031-020-09557-5en_US
dc.description.abstractLet X be a complete toric variety equipped with the action of a torus T, and G a reductive algebraic group, defined over an algebraically closed field K. We introduce the notion of a compatible ∑-filtered algebra associated to X, generalizing the notion of a compatible ∑-filtered vector space due to Klyachko, where ∑ denotes the fan of X. We combine Klyachko's classification of T-equivariant vector bundles on X with Nori's Tannakian approach to principal G-bundles, to give an equivalence of categories between T-equivariant principal G-bundles on X and certain compatible ∑-filtered algebras associated to X, when the characteristic of K is 0.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectMathematicsen_US
dc.subjectTOC-MAR-2020en_US
dc.subject2020en_US
dc.subject2020-MAR-WEEK4en_US
dc.titleTannakian Classification of Equivariant Principal Bundles on Toric Varietiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleTransformation Groupsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.