Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4508
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biswas, Indranil | en_US |
dc.contributor.author | Dey, Arijit | en_US |
dc.contributor.author | PODDAR, MAINAK | en_US |
dc.date.accessioned | 2020-03-27T04:13:39Z | |
dc.date.available | 2020-03-27T04:13:39Z | |
dc.date.issued | 2020-12 | en_US |
dc.identifier.citation | Transformation Groups, 25(4), 1009–1035. | en_US |
dc.identifier.issn | 1531-586X | en_US |
dc.identifier.issn | 1083-4362 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4508 | |
dc.identifier.uri | https://doi.org/10.1007/s00031-020-09557-5 | en_US |
dc.description.abstract | Let X be a complete toric variety equipped with the action of a torus T, and G a reductive algebraic group, defined over an algebraically closed field K. We introduce the notion of a compatible ∑-filtered algebra associated to X, generalizing the notion of a compatible ∑-filtered vector space due to Klyachko, where ∑ denotes the fan of X. We combine Klyachko's classification of T-equivariant vector bundles on X with Nori's Tannakian approach to principal G-bundles, to give an equivalence of categories between T-equivariant principal G-bundles on X and certain compatible ∑-filtered algebras associated to X, when the characteristic of K is 0. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Mathematics | en_US |
dc.subject | TOC-MAR-2020 | en_US |
dc.subject | 2020 | en_US |
dc.subject | 2020-MAR-WEEK4 | en_US |
dc.title | Tannakian Classification of Equivariant Principal Bundles on Toric Varieties | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Transformation Groups | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.