Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4512
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BISWAS, ANUP | en_US |
dc.date.accessioned | 2020-03-27T04:13:40Z | |
dc.date.available | 2020-03-27T04:13:40Z | |
dc.date.issued | 2020-04 | en_US |
dc.identifier.citation | Journal of Differential Equations, 268(9), 257-5282. | en_US |
dc.identifier.issn | 0022-0396 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4512 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jde.2019.11.011 | en_US |
dc.description.abstract | We consider a class of nonlinear integro-differential operators and prove existence of two principal (half) eigenvalues in bounded smooth domains with exterior Dirichlet condition. We then establish simplicity of the principal eigenfunctions in viscosity sense, maximum principles, continuity property of the principal eigenvalues with respect to domains etc. We also prove an anti-maximum principle and study existence result for some nonlinear problem via Rabinowitz bifurcation-type results. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Principal eigenvalue | en_US |
dc.subject | Fractional Laplacian | en_US |
dc.subject | Nonlocal operators | en_US |
dc.subject | Ground state | en_US |
dc.subject | Anti-maximum principle | en_US |
dc.subject | Dirichlet problem | en_US |
dc.subject | TOC-MAR-2020 | en_US |
dc.subject | 2020 | en_US |
dc.subject | 2020-MAR-WEEK4 | en_US |
dc.title | Principal eigenvalues of a class of nonlinear integro-differential operators | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Differential Equations | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.