Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4512
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.date.accessioned2020-03-27T04:13:40Z
dc.date.available2020-03-27T04:13:40Z
dc.date.issued2020-04en_US
dc.identifier.citationJournal of Differential Equations, 268(9), 257-5282.en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4512-
dc.identifier.urihttps://doi.org/10.1016/j.jde.2019.11.011en_US
dc.description.abstractWe consider a class of nonlinear integro-differential operators and prove existence of two principal (half) eigenvalues in bounded smooth domains with exterior Dirichlet condition. We then establish simplicity of the principal eigenfunctions in viscosity sense, maximum principles, continuity property of the principal eigenvalues with respect to domains etc. We also prove an anti-maximum principle and study existence result for some nonlinear problem via Rabinowitz bifurcation-type results.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectFractional Laplacianen_US
dc.subjectNonlocal operatorsen_US
dc.subjectGround stateen_US
dc.subjectAnti-maximum principleen_US
dc.subjectDirichlet problemen_US
dc.subjectTOC-MAR-2020en_US
dc.subject2020en_US
dc.subject2020-MAR-WEEK4en_US
dc.titlePrincipal eigenvalues of a class of nonlinear integro-differential operatorsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.