Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhunia, Sushilen_US
dc.contributor.authorMAHALANOBIS, AYANen_US
dc.contributor.authorSHINDE, PRALHADen_US
dc.contributor.authorSINGH, ANUPAM KUMARen_US
dc.date.accessioned2020-04-30T06:03:03Z
dc.date.available2020-04-30T06:03:03Z
dc.date.issued2020-07en_US
dc.identifier.citationAdvances in Applied Clifford Algebras, 30(3).en_US
dc.identifier.issn0188-7009en_US
dc.identifier.issn1661-4909en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4568-
dc.identifier.urihttps://doi.org/10.1007/s00006-020-01054-yen_US
dc.description.abstractThis paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decomposition with respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectSymplectic similitude groupen_US
dc.subjectOrthogonal similitude groupen_US
dc.subjectWord problemen_US
dc.subjectGaussian eliminationen_US
dc.subjectSpinor normen_US
dc.subjectDouble coset decompositionen_US
dc.subjectTOC-APR-2020en_US
dc.subject2020en_US
dc.subject2020-APR-WEEK5en_US
dc.titleAlgorithms in Linear Algebraic Groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAdvances in Applied Clifford Algebrasen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.