Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4612
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAKTA, MOUSOMIen_US
dc.contributor.authorPhuoc-Tai Nguyenen_US
dc.date.accessioned2020-05-22T13:07:13Z
dc.date.available2020-05-22T13:07:13Z
dc.date.issued2020-03en_US
dc.identifier.citationAdvances in Nonlinear Analysis, 9(1), 1480-1503.en_US
dc.identifier.issn2191-9496en_US
dc.identifier.issn2191-950Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4612-
dc.identifier.urihttps://doi.org/10.1515/anona-2020-0060en_US
dc.description.abstractWe study positive solutions to the fractional Lane-Emden system ⎧⎩⎨⎪⎪(−Δ)su(−Δ)svu=v=vp+μ=uq+ν=0inΩinΩinΩc=ℝN∖Ω,(S) where Ω is a C2 bounded domains in ℝN, s ∈ (0, 1), N > 2s, p > 0, q > 0 and μ, ν are positive measures in Ω. We prove the existence of the minimal positive solution of (S) under a smallness condition on the total mass of μ and ν. Furthermore, if p, q ∈ (1,N+sN−s) and 0 ≤ μ, ν ∈ Lr(Ω), for some r > N2s, we show the existence of at least two positive solutions of (S). The novelty lies at the construction of the second solution, which is based on a highly nontrivial adaptation of Linking theorem. We also discuss the regularity of the solutions.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectNonlocalen_US
dc.subjectSystemen_US
dc.subjectExistenceen_US
dc.subjectMultiplicityen_US
dc.subjectLinking Theoremen_US
dc.subjectMeasure Dataen_US
dc.subjectSource Termsen_US
dc.subjectPositive Solutionen_US
dc.subject2020en_US
dc.titleOn the existence and multiplicity of solutions to fractional Lane-Emden elliptic systems involving measuresen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAdvances in Nonlinear Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.