Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerchio, Elviseen_US
dc.contributor.authorGanguly, Debdipen_US
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2020-06-12T06:08:42Z-
dc.date.available2020-06-12T06:08:42Z-
dc.date.issued2020-10en_US
dc.identifier.citationJournal of Mathematical Analysis and Applications, 490(1).en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.issn1096-0813en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4689-
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2020.124213en_US
dc.description.abstractWe prove second and fourth order improved Poincaré type inequalities on the hyperbolic space involving Hardy-type remainder terms. Since theirs l.h.s. only involve the radial part of the gradient or of the laplacian, they can be seen as stronger versions of the classical Poincaré inequality. We show that such inequalities hold true on model manifolds as well, under suitable curvature assumptions and sharpness of some constants is also discussed.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPoincaré-Hardy inequalityen_US
dc.subjectPoincaré-Rellich inequalityen_US
dc.subjectHyperbolic spaceen_US
dc.subjectRiemannian model manifoldsen_US
dc.subjectTOC-JUN-2020en_US
dc.subject2020en_US
dc.subject2020-JUN-WEEK2en_US
dc.titleOn some strong Poincaré inequalities on Riemannian models and their improvementsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.