Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4801
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorV., NAZIAen_US
dc.date.accessioned2020-06-19T07:03:16Z-
dc.date.available2020-06-19T07:03:16Z-
dc.date.issued2020-04en_US
dc.identifier.citationNazia V. Representation Theory of p-adic Groups and the Local Langlands Correspondence for GL(2), 2020.en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4801-
dc.description.abstractWe discuss the representation theory of GL(2, F), where F is a non-archimedean local field following 'The Local Langlands Conjecture for GL(2)' by Bushnell and Henniart. Then we look at the decomposition of L^2(H\PGL(2, F)) into irreducible unitary representations, where H is a cocompact discrete subgroup. We prove a correspondence between multiplicity of spherical representations in the decomposition and eigenvalue of Hecke operator on the quotient graph of Bruhat-Tits tree. Proof uses the theory of spherical functions. Following the Bushnell and Henniart's book, we also state the local Langlands correspondence for GL(2, F), by discussing all the required machinery to understand the statement. Along with the representation theory of GL(2, F), this requires representation theory of Weil group and the theory of L-functions and local constants of these two classes of representations.en_US
dc.language.isoenen_US
dc.subjectBruhat-Tits treeen_US
dc.subjectSpectral theoryen_US
dc.subjectSpherical functionsen_US
dc.subjectSupercuspidal representations of GL(2)en_US
dc.subjectMultiplicity spectrum of spherical representations of PGL(2)en_US
dc.subject2020en_US
dc.titleRepresentation theory of p-adic groups and the local Langlands correspondence for GL(2)en_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20151092en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Nazia_Thesis.pdfMS Thesis661 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.