Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4807
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMISHRA, RAMAen_US
dc.contributor.authorP., ADITHYANen_US
dc.date.accessioned2020-06-19T08:12:36Z-
dc.date.available2020-06-19T08:12:36Z-
dc.date.issued2020-04en_US
dc.identifier.citationAdithyan P, Geometric Knot Theory, 2020en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4807-
dc.description.abstractThis thesis provides an exposition to some geometric aspects of knot theory. We discuss certain numerical invariants of knots which are geometric in nature. Many of them are defined as the minimum value of some quantity over all the directions taken over one particular diagram or configuration and then minimizing this over all possible configurations. Crossing index, unknotting index and bridge index are some of the examples of such invariants. Later some invariants were defined by first taking the maximum value of these quantities over all the directions taken over one particular diagram or configuration and then minimizing this over all possible configurations. They were termed as superinvariants. Superbridge index, supercrossing index and superunknotting index are studied lately. All these invariants are very difficult to compute. Certain parametrizations are used to obtain some bounds for these invariants. Polygonal representation for knots has been instrumental in PL category. Similarly polynomial representation plays an important role in smooth category. In this thesis we also study the topology of the spaces of polygonal knots as well as polynomial knots. We discuss some applications of these spaces at the end.en_US
dc.language.isoenen_US
dc.subjectKnot theoryen_US
dc.subjectPolygonal knotsen_US
dc.subjectPolynomial knotsen_US
dc.subjectSuperinvariants of knotsen_US
dc.subjectWeaving knotsen_US
dc.subject2020en_US
dc.titleGeometric Knot Theoryen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20151006en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Geometric_Knot_Theory(MS_Thesis_20151006).pdfMS Thesis2.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.