Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4816
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAKTA, MOUSOMIen_US
dc.contributor.authorRAKSHIT, ARGHYAen_US
dc.date.accessioned2020-06-19T08:49:35Z-
dc.date.available2020-06-19T08:49:35Z-
dc.date.issued2020-04en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4816-
dc.description.abstractIn this dissertation we present a brief introduction to theory of elliptic partial differential equations (PDE). First we review theory of Sobolev spaces. After that we discuss existence, regularity and other qualitative properties of weak solutions to the second order linear elliptic PDE. Afterwards, we discuss various standard variational and non-variational techniques to study nonlinear elliptic pde, mainly existence/nonexistence and various qualitative properties. Finally, in the last two chapters we mention various regularity results for weak solutions to elliptic equations in divergence form, in particular well-known theory of De Giorgi-Nash-Moser.en_US
dc.language.isoenen_US
dc.subjectElliptic PDEen_US
dc.subjectRegularityen_US
dc.subjectQualitative Propertiesen_US
dc.subjectExistenceen_US
dc.subjectNonexistenceen_US
dc.subject2020en_US
dc.titleTheory of Elliptic PDEen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20151147en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Arghya.pdfMS Thesis397.35 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.