Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorFATIMA, AYESHAen_US
dc.date.accessioned2020-06-23T07:02:11Z
dc.date.available2020-06-23T07:02:11Z
dc.date.issued2020-06en_US
dc.identifier.citationJournal of the Ramanujan Mathematical Society, 35(2), 139-147.en_US
dc.identifier.issn0970-1249en_US
dc.identifier.issn2320-3110en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/4827-
dc.identifier.urihttp://www.mathjournals.org/jrms/2020-035-002/2020-035-002-003.htmlen_US
dc.description.abstractOne can define the notion of primitive length spectrum for a simple regular periodic graph via counting the orbits of closed reduced primitive cycles under an action of a discrete group of automorphisms ([GIL]). We prove that this primitive length spectrum satisfies an analogue of the 'Multiplicity one' property. We show that if all but finitely many primitive cycles in two simple regular periodic graphs have equal lengths, then all the primitive cycles have equal lengths. This is a graph-theoretic analogue of a similar theorem in the context of geodesics on hyperbolic spaces ([BR]). We also prove, in the context of actions of finitely generated abelian groups on a graph, that if the adjacency operators ([Clair]) for two actions of such a group on a graph are similar, then corresponding periodic graphs are length isospectral.en_US
dc.language.isoenen_US
dc.publisherRamanujan Mathematical Societyen_US
dc.subjectStrong Multiplicity Oneen_US
dc.subjectZeta-Functionsen_US
dc.subjectTOC-JUN-2020en_US
dc.subject2020en_US
dc.subject2020-JUN-WEEK3en_US
dc.titleOn the length spectra of simple regular periodic graphsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of the Ramanujan Mathematical Societyen_US
dc.publication.originofpublisherIndianen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.