Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5011
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Arunangshuen_US
dc.contributor.authorGOSWAMI, ANINDYAen_US
dc.contributor.authorOverbeck, Ludgeren_US
dc.date.accessioned2020-09-04T05:38:18Z-
dc.date.available2020-09-04T05:38:18Z-
dc.date.issued2018-07en_US
dc.identifier.citationStatistics & Probability Letters, 138, 116-126.en_US
dc.identifier.issn0167-7152en_US
dc.identifier.issn1879-2103en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5011-
dc.identifier.uri-en_US
dc.description.abstractWe consider a regime switching stochastic volatility model where the stock volatility dynamics is a semi-Markov modulated square root mean reverting process. Under this model assumption, we find the locally risk minimizing price of European type vanilla options. The price function is shown to satisfy a non-local degenerate parabolic PDE which can be viewed as a generalization of the Heston PDE. The related Cauchy problem involving the PDE is shown to be equivalent to an integral equation (IE). The existence and uniqueness of solution to the PDE is carried out by studying the IE and using the semigroup theory.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectCauchy problemen_US
dc.subjectFollmer-Schweizer decompositionen_US
dc.subjectHeston modelen_US
dc.subjectOption pricingen_US
dc.subjectRegime switching modelsen_US
dc.subject2018en_US
dc.titleOption pricing in a regime switching stochastic volatility modelen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleStatistics & Probability Lettersen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.