Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5023
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMitra, Arnaben_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2020-09-04T05:38:19Z
dc.date.available2020-09-04T05:38:19Z
dc.date.issued2018-03en_US
dc.identifier.citationForum Mathematicum, 30(2), 347-384.en_US
dc.identifier.issn0933-7741en_US
dc.identifier.issn1435-5337en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5023-
dc.identifier.uri-en_US
dc.description.abstractLet G 1 be an orthogonal, symplectic or unitary group over a local field and let P = M N be a maximal parabolic subgroup. Then the Levi subgroup M is the product of a group of the same type as G 1 and a general linear group, acting on vector spaces X and W, respectively. In this paper we decompose the unipotent radical N of P under the adjoint action of M, assuming dim W ≤ dim X , excluding only the symplectic case with dim W odd. The result is a Weyl-type integration formula for N with applications to the theory of intertwining operators for parabolically induced representations of G 1. Namely, one obtains a bilinear pairing on matrix coefficients, in the spirit of Goldberg–Shahidi, which detects the presence of poles of these operators at 0.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectIntegration formulaen_US
dc.subjectMaximal parabolicen_US
dc.subjectUnipotent radicalen_US
dc.subjectLanglands-Shahidi methoden_US
dc.subjectIntertwining operatoren_US
dc.subject2018en_US
dc.titleTowards a Goldberg-Shahidi pairing for classical groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleForum Mathematicumen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.