Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5070
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | AMBI, CHAITANYA | en_US |
dc.date.accessioned | 2020-09-25T10:23:10Z | |
dc.date.available | 2020-09-25T10:23:10Z | |
dc.date.issued | 2020-12 | en_US |
dc.identifier.citation | Journal of Number Theory, 217, 237-255. | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.issn | 1096-1658 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5070 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jnt.2020.05.004 | en_US |
dc.description.abstract | We estimate the growth of cuspidal cohomology of GL(2)(A(Q)) Quantitatively, we provide bounds on the total number of normalised eigenforms of Hecke operators which are obtained by automorphic induction from Hecke characters of imaginary quadratic fields grows as level structure varies. We further investigate how much of cuspidal cohomology of GL(3)(A(Q)) is obtained by symmetric square transfer from GL(2)(A(Q)) when the level structure corresponds to power of an odd prime. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Langlands transfer | en_US |
dc.subject | Cuspidal cohomology | en_US |
dc.subject | Automorphic induction | en_US |
dc.subject | Symmetric square transfer | en_US |
dc.subject | 2020 | en_US |
dc.subject | 2020-SEP-WEEK4 | en_US |
dc.subject | TOC-SEP-2020 | en_US |
dc.title | On the growth of cuspidal cohomology of GL(2) and GL(3) | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Number Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.