Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5108
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, C. C.en_US
dc.contributor.authorCHATTERJI, APRATIMen_US
dc.contributor.authorSutmann, G.en_US
dc.contributor.authorGompper, Gen_US
dc.contributor.authorWinkler, R. G.en_US
dc.date.accessioned2020-10-13T09:55:04Z-
dc.date.available2020-10-13T09:55:04Z-
dc.date.issued2010-01en_US
dc.identifier.citationJournal of Computational Physics, 229(1), 168-177.en_US
dc.identifier.issn0021-9991en_US
dc.identifier.issn1090-2716en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5108-
dc.identifier.urihttps://doi.org/10.1016/j.jcp.2009.09.024en_US
dc.description.abstractA local Maxwellian thermostat for the multiparticle collision dynamics algorithm is proposed. The algorithm is based on a scaling of the relative velocities of the fluid particles within a collision cell. The scaling factor is determined from the distribution of the kinetic energy within such a cell. Thereby the algorithm ensures that the distribution of the relative velocities is given by the Maxwell–Boltzmann distribution. The algorithm is particularly useful for non-equilibrium systems, where temperature has to be controlled locally. We perform various non-equilibrium simulations for fluids in shear and pressure-driven flow, which confirm the validity of the proposed simulation scheme. In addition, we determine the dynamic structure factors for fluids with and without thermostat, which exhibit significant differences due to suppression of the diffusive part of the energy transport of the isothermal system.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectIsothermal simulationsen_US
dc.subjectCanonical ensembleen_US
dc.subjectVelocity scalingen_US
dc.subjectMesoscale hydrodynamics simulationsen_US
dc.subjectMultiparticle collision dynamicsen_US
dc.subjectNon-equilibrium simulationsen_US
dc.subjectThermalizationen_US
dc.subjectStochastic processen_US
dc.subject2010en_US
dc.titleCell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of Computational Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.