Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMadeti, Prabhakaren_US
dc.contributor.authorMISHRA, RAMAen_US
dc.date.accessioned2020-10-13T09:55:04Z-
dc.date.available2020-10-13T09:55:04Z-
dc.date.issued2009-04en_US
dc.identifier.citationJournal of Knot Theory and Its Ramifications, 18, (4), 485-491.en_US
dc.identifier.issn0218-2165en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112-
dc.identifier.urihttps://doi.org/10.1142/S021821650900704Xen_US
dc.description.abstractIn this paper we prove the following result: for coprime positive integers p and q with p < q, if r is the least positive integer such that 2p-1 and q + r are coprime, then the minimal degree sequence for a torus knot of type (p, q) is the triple (2p - 1, q + r, d) or (q + r, 2p - 1, d) where q + r + 1 ≤ d ≤ 2q - 1.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.subjectBridge numberen_US
dc.subjectReal deformationen_US
dc.subjectReal and imaginary nodes (p-1)-alternatingen_US
dc.subject2009en_US
dc.titleMINIMAL DEGREE SEQUENCE FOR TORUS KNOTS OF TYPE (p, q)en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Knot Theory and Its Ramificationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.