Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Madeti, Prabhakar | en_US |
dc.contributor.author | MISHRA, RAMA | en_US |
dc.date.accessioned | 2020-10-13T09:55:04Z | - |
dc.date.available | 2020-10-13T09:55:04Z | - |
dc.date.issued | 2009-04 | en_US |
dc.identifier.citation | Journal of Knot Theory and Its Ramifications, 18, (4), 485-491. | en_US |
dc.identifier.issn | 0218-2165 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5112 | - |
dc.identifier.uri | https://doi.org/10.1142/S021821650900704X | en_US |
dc.description.abstract | In this paper we prove the following result: for coprime positive integers p and q with p < q, if r is the least positive integer such that 2p-1 and q + r are coprime, then the minimal degree sequence for a torus knot of type (p, q) is the triple (2p - 1, q + r, d) or (q + r, 2p - 1, d) where q + r + 1 ≤ d ≤ 2q - 1. | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.subject | Bridge number | en_US |
dc.subject | Real deformation | en_US |
dc.subject | Real and imaginary nodes (p-1)-alternating | en_US |
dc.subject | 2009 | en_US |
dc.title | MINIMAL DEGREE SEQUENCE FOR TORUS KNOTS OF TYPE (p, q) | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Knot Theory and Its Ramifications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.