Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHAVAN, SAMEER | en_US |
dc.date.accessioned | 2020-10-13T09:55:05Z | - |
dc.date.available | 2020-10-13T09:55:05Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | Studia Mathematica, 186(3), 275-293. | en_US |
dc.identifier.issn | 0039-3223 | en_US |
dc.identifier.issn | 1730-6337 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117 | - |
dc.identifier.uri | https://doi.org/10.4064/sm186-3-6 | en_US |
dc.description.abstract | We introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Mathematics Polish Academy of Sciences | en_US |
dc.subject | Hyponormal | en_US |
dc.subject | Hyperexpansive | en_US |
dc.subject | Hypercyclicity | en_US |
dc.subject | p-isometric | en_US |
dc.subject | Wandering Subspace | en_US |
dc.subject | 2008 | en_US |
dc.title | On operators close to isometries | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Studia Mathematica | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.