Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHAVAN, SAMEERen_US
dc.date.accessioned2020-10-13T09:55:05Z-
dc.date.available2020-10-13T09:55:05Z-
dc.date.issued2008en_US
dc.identifier.citationStudia Mathematica, 186(3), 275-293.en_US
dc.identifier.issn0039-3223en_US
dc.identifier.issn1730-6337en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5117-
dc.identifier.urihttps://doi.org/10.4064/sm186-3-6en_US
dc.description.abstractWe introduce and discuss a class of operators, to be referred to as operators close to isometries. The Bergman-type operators, 2-hyperexpansions, expansive p-isometries, and certain alternating hyperexpansions are main examples of such operators. We establish a few decomposition theorems for operators close to isometries. Applications are given to the theory of p-isometries and of hyperexpansive operators.en_US
dc.language.isoenen_US
dc.publisherInstitute of Mathematics Polish Academy of Sciencesen_US
dc.subjectHyponormalen_US
dc.subjectHyperexpansiveen_US
dc.subjectHypercyclicityen_US
dc.subjectp-isometricen_US
dc.subjectWandering Subspaceen_US
dc.subject2008en_US
dc.titleOn operators close to isometriesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleStudia Mathematicaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.