Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JOSHI, ROHIT | en_US |
dc.contributor.author | SPALLONE, STEVEN | en_US |
dc.date.accessioned | 2020-10-16T06:36:48Z | - |
dc.date.available | 2020-10-16T06:36:48Z | - |
dc.date.issued | 2020-09 | en_US |
dc.identifier.citation | Representation Theory, 24, 435-469. | en_US |
dc.identifier.issn | 1088-4165 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129 | - |
dc.identifier.uri | https://doi.org/10.1090/ert/552 | en_US |
dc.description.abstract | Let $ G$ be a connected reductive group over a field $ F$ of characteristic 0, and $ \varphi : G \to \operatorname {SO}(V)$ an orthogonal representation over $ F$. We give criteria to determine when $ \varphi $ lifts to the double cover $ \operatorname {Spin}(V)$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.subject | Reductive groups | en_US |
dc.subject | Orthogonal representations | en_US |
dc.subject | Dynkin index | en_US |
dc.subject | Lifting criterion | en_US |
dc.subject | Weyl dimension formula | en_US |
dc.subject | 2020 | en_US |
dc.subject | 2020-OCT-WEEK2 | en_US |
dc.subject | TOC-OCT-2020 | en_US |
dc.title | Spinoriality of orthogonal representations of reductive groups | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Representation Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.