Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJOSHI, ROHITen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2020-10-16T06:36:48Z-
dc.date.available2020-10-16T06:36:48Z-
dc.date.issued2020-09en_US
dc.identifier.citationRepresentation Theory, 24, 435-469.en_US
dc.identifier.issn1088-4165en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5129-
dc.identifier.urihttps://doi.org/10.1090/ert/552en_US
dc.description.abstractLet $ G$ be a connected reductive group over a field $ F$ of characteristic 0, and $ \varphi : G \to \operatorname {SO}(V)$ an orthogonal representation over $ F$. We give criteria to determine when $ \varphi $ lifts to the double cover $ \operatorname {Spin}(V)$.en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.subjectReductive groupsen_US
dc.subjectOrthogonal representationsen_US
dc.subjectDynkin indexen_US
dc.subjectLifting criterionen_US
dc.subjectWeyl dimension formulaen_US
dc.subject2020en_US
dc.subject2020-OCT-WEEK2en_US
dc.subjectTOC-OCT-2020en_US
dc.titleSpinoriality of orthogonal representations of reductive groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleRepresentation Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.