Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5189
Title: Geometric Catalysis of Membrane Fission Driven by Flexible Dynamin Rings
Authors: Shnyrova, Anna V.
Bashkirov, Pavel V.
Akimov, Sergey A.
PUCADYIL, THOMAS J.
Zimmerberg, Joshua
Schmid, Sandra L.
Frolov, Vadim A.
Dept. of Biology
Keywords: Dependent Conformational-Changes
Crystal-Structure
Constriction
Reveals
Fusion
Shape
2013
Issue Date: Mar-2013
Publisher: American Association for the Advancement of Science
Citation: Science, 339(6126), 1433-143.
Abstract: Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5189
https://doi.org/10.1126/science.1233920
ISSN: 0036-8075
1095-9203
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.