Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuryawanshi, Anilen_US
dc.contributor.authorAravindan, Vanchiappanen_US
dc.contributor.authorMhamane, Dattakumaren_US
dc.contributor.authorYadav, Poonamen_US
dc.contributor.authorPatil, Shankaren_US
dc.contributor.authorMadhavi, Srinivasanen_US
dc.contributor.authorOGALE, SATISHCHANDRAen_US
dc.date.accessioned2020-10-26T06:38:01Z-
dc.date.available2020-10-26T06:38:01Z-
dc.date.issued2015-11en_US
dc.identifier.citationEnergy Storage Materials, 1, 152-157.en_US
dc.identifier.issn2405-8297en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5264-
dc.identifier.urihttps://doi.org/10.1016/j.ensm.2015.09.003en_US
dc.description.abstractIn this work, we report the charge storage performance of Fe3O4-hierarchically perforated graphene nanosheet (Fe3O4-HPGN) based nanocomposite as an anode material in the full cell configuration with spinel LiMn2O4 cathode. When the electrochemical performance of Fe3O4-HPGN is evaluated in half-cell assembly (with Li metal) a first reversible capacity of 1002 mA h g−1 is noted at 0.1 C. The full-cell displays a reversible capacity of ~603 mA h g−1 (based on anode loading) at 0.11 C rate with working potential of ~2.7 V. Charge–discharge profiles for the full cell up to 10,000 cycles at 2.15 C rate show ~66% capacity retention. The observed electrochemical performance is attributed to the presence of hierarchical perforations on 2D graphene which help stabilize the electrochemically active Fe3O4 phase while facilitating the electron transport.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPerforated graphemeen_US
dc.subjectNanocompositeen_US
dc.subjectLi-ion batteryen_US
dc.subjectElectrodesen_US
dc.subjectCycleabilityen_US
dc.subject2015en_US
dc.titleExcellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleEnergy Storage Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.