Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5301
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHAKRABORTTY, SHANKHADEEP | en_US |
dc.contributor.author | Sathiapalan, B. | en_US |
dc.date.accessioned | 2020-10-26T06:38:37Z | - |
dc.date.available | 2020-10-26T06:38:37Z | - |
dc.date.issued | 2015-01 | en_US |
dc.identifier.citation | Nuclear Physics B, 890, 241-262. | en_US |
dc.identifier.issn | 0550-3213 | en_US |
dc.identifier.issn | 1873-1562 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5301 | - |
dc.identifier.uri | https://doi.org/10.1016/j.nuclphysb.2014.11.010 | en_US |
dc.description.abstract | The consequences of the Schwinger effect for conductivity are computed for strong coupling systems using holography. The one-loop diagram on the flavor brane introduces an imaginary part in the effective action for a Maxwell flavor gauge field. This in turn introduces a real conductivity in an otherwise insulating phase of the boundary theory. Moreover, in certain regions of parameter space the differential conductivity is negative. This is computed in the context of the Sakai–Sugimoto model. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Pair Creation | en_US |
dc.subject | Photon | en_US |
dc.subject | 2015 | en_US |
dc.title | Schwinger effect and negative differential conductivity in holographic models | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | Nuclear Physics B | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.