Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrasad, Amritanshuen_US
dc.contributor.authorSingla, Poojaen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2020-10-26T06:38:37Z-
dc.date.available2020-10-26T06:38:37Z-
dc.date.issued2015en_US
dc.identifier.citationIndiana University Mathematics Journal, 64(2), 471-514.en_US
dc.identifier.issn0022-2518en_US
dc.identifier.issn1943-5258en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5303-
dc.identifier.urihttps://doi.org/10.1512/iumj.2015.64.5500en_US
dc.description.abstractLet R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R [t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.en_US
dc.language.isoenen_US
dc.publisherIndiana University Mathematics Journalen_US
dc.subjectSimilarity classesen_US
dc.subjectMatricesen_US
dc.subjectLocal ringsen_US
dc.subjectExtensionsen_US
dc.subject2015en_US
dc.titleSimilarity of Matrices Over Local Rings of Length Twoen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleIndiana University Mathematics Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.