Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMISHRA, MANISHen_US
dc.contributor.authorPHILIP, AMY BINNYen_US
dc.date.accessioned2021-03-02T05:57:41Z
dc.date.available2021-03-02T05:57:41Z
dc.date.issued2020-08en_US
dc.identifier.citationArchiv Der Mathematik, 115(2), 169-173.en_US
dc.identifier.issn0003-889Xen_US
dc.identifier.issn1420-8938en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5676-
dc.identifier.urihttps://doi.org/10.1007/s00013-020-01450-7en_US
dc.description.abstractLet P be a positive rational number. A function f:R→R has the finite gaps property mod P if the following holds: for any positive irrational α and positive integer M, when the values of f(mα), 1≤m≤M, are inserted mod P into the interval [0, P) and arranged in increasing order, the number of distinct gaps between successive terms is bounded by a constant kf which depends only on f. In this note, we prove a generalization of the 3d distance theorem of Chung and Graham. As a consequence, we show that a piecewise linear map with rational slopes and having only finitely many non-differentiable points has the finite gaps property mod P. We also show that if f is the distance to the nearest integer function, then it has the finite gaps property mod 1 with kf≤6.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectEquidistribution theoremen_US
dc.subjectSteinhaus conjectureen_US
dc.subjectThree gaps problemen_US
dc.subject2020en_US
dc.titleA generalization of the 3d distance theoremen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleArchiv Der Mathematiken_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.