Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5683
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorLIERL, JANNAen_US
dc.date.accessioned2021-03-02T05:57:42Z-
dc.date.available2021-03-02T05:57:42Z-
dc.date.issued2020-05en_US
dc.identifier.citationJournal of Functional Analysis, 278(8).en_US
dc.identifier.issn0022-1236en_US
dc.identifier.issn1096-0783en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5683-
dc.identifier.urihttps://doi.org/10.1016/j.jfa.2019.108429en_US
dc.description.abstractWe consider a general class of metric measure spaces equipped with a strongly local regular Dirichlet form and provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of the classical Lieb's inequality, and (ii) uniqueness of nonnegative super-solutions to semi-linear elliptic equations on metric measure spaces. Finally, using heat-kernel estimates we generalize the local Faber-Krahn inequality recently obtained in [28] to local and non-local Dirichlet spaces.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectLieb's inequalityen_US
dc.subjectPositive supersolutionsen_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectKeller's inequalityen_US
dc.subjectMoment estimate for eigenvaluesen_US
dc.subjectNodal domainen_US
dc.subjectLiouville theoremen_US
dc.subject2020en_US
dc.titleFaber-Krahn type inequalities and uniqueness of positive solutions on metric measure spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Functional Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.