Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5692
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorModasiya, Miteshen_US
dc.date.accessioned2021-03-02T05:58:15Z
dc.date.available2021-03-02T05:58:15Z
dc.date.issued2020-11en_US
dc.identifier.citationDifferential Integral Equations, 33 (11-12), 597-624.en_US
dc.identifier.issn0893-4983en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5692-
dc.identifier.uri-en_US
dc.description.abstractWe consider a class of fully nonlinear integro-differential operators where the nonlocal integral has two components: the non-degenerate one corresponds to the ?-stable operator and the second one (possibly degenerate) corresponds to a class of lower order L-vy measures. Such operators do not have a global scaling property. We establish H-lder regularity, Harnack inequality and boundary Harnack property of solutions of these operators.en_US
dc.language.isoenen_US
dc.publisherKhayyam Publishingen_US
dc.subjectMathematicsen_US
dc.subject2020en_US
dc.titleRegularity results of nonlinear perturbed stable-like operatorsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDifferential and Integral Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.