Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUSHWAHA, RINKUen_US
dc.contributor.authorHALDAR, SATTWICKen_US
dc.contributor.authorSHEKHAR, PRAGALBHen_US
dc.contributor.authorKRISHNAN, AKSHARAen_US
dc.contributor.authorSaha, Jayeetaen_US
dc.contributor.authorHui, Pramitien_US
dc.contributor.authorVinod, Chathakudath Prabhakaranen_US
dc.contributor.authorSubramaniam, Chandramoulien_US
dc.contributor.authorVAIDHYANATHAN, RAMANATHANen_US
dc.date.accessioned2021-03-04T11:47:02Z
dc.date.available2021-03-04T11:47:02Z
dc.date.issued2021-04en_US
dc.identifier.citationAdvanced Energy Materials, 11(13), 2003626.en_US
dc.identifier.issn1614-6832en_US
dc.identifier.issn1614-6840en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5702
dc.identifier.urihttps://doi.org/10.1002/aenm.202003626en_US
dc.description.abstractCapacitors are the most practical high‐storage and rapid charge‐release devices. The number of ions stored per unit area and their interaction strength with the electrode dictates capacitor‐performance. Microporous materials provide a high storage surface and optimal interactions. Adsorbing electron‐rich and easily polarizable molecules into microporous electrodes is expected to boost Faradaic pseudo‐activity. If such electrode–electrolyte interactions can be made as a potential‐driven reversible process, the resulting capacitors would be adaptable and device‐friendly. A composite covalent organic framework (COF)‐carbon electrode with redox‐active KI is combined in an H2SO4 electrolyte for the first time. This composite electrode benefits from the redox‐functionality of COF and electronic conductivity of carbon, leading to superior capacitative activity. Operando spectro‐electrochemical measurements reveal the existence of multiple polyiodide species, although the I3− is the predominantly electroactive species adsorbing on the microporous triazine‐phenol COF electrode. A systematic fabrication of the flexible solid‐state devices using the COF‐redox‐electrolyte reveals a high areal capacitance of 270 ± 11 mF cm−2 and gravimetric capacitance of 57 ± 8 F g−1. The inclusion of KI in H2SO4 (electrolyte) yields an approximately eight‐fold enhancement in solid‐state gravimetric specific capacitance. The imine‐COF retains 89% of its capacity even after 10 000 cycles.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectCovalent organic frameworksen_US
dc.subjectPolyiodideen_US
dc.subjectRedox electrolytesen_US
dc.subjectsolid&#8208en_US
dc.subjectState capacitorsen_US
dc.subjectSupercapacitorsen_US
dc.subject2021-MAR-WEEK1en_US
dc.subjectTOC-MAR-2021en_US
dc.subject2021en_US
dc.titleExceptional Capacitance Enhancement of a Non‐Conducting COF through Potential‐Driven Chemical Modulation by Redox Electrolyteen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleAdvanced Energy Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.