Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5714
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGAUTAM, MANUen_US
dc.contributor.authorBHAT, ZAHID M.en_US
dc.contributor.authorRAAFIK, ABDULen_US
dc.contributor.authorVot, Steven Leen_US
dc.contributor.authorDEVENDRACHARI, MRUTHUNJAYACHARI C.en_US
dc.contributor.authorKOTTAICHAMY, ALAGAR RAJAen_US
dc.contributor.authorDARGILY, NEETHU CHRISTUDASen_US
dc.contributor.authorTHIMMAPPA, RAVIKUMARen_US
dc.contributor.authorFontaine, Olivieren_US
dc.contributor.authorTHOTIYL, MUSTHAFA OTTAKAMen_US
dc.date.accessioned2021-03-30T09:16:37Z
dc.date.available2021-03-30T09:16:37Z
dc.date.issued2021-02en_US
dc.identifier.citationJournal of Physical Chemistry Letters, 12(5), 1374–1383.en_US
dc.identifier.issn1948-7185en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5714-
dc.identifier.urihttps://doi.org/10.1021/acs.jpclett.0c03584en_US
dc.description.abstractThe interfacial electrochemistry of reversible redox molecules is central to state-of-the-art flow batteries, outer-sphere redox species-based fuel cells, and electrochemical biosensors. At electrochemical interfaces, because mass transport and interfacial electron transport are consecutive processes, the reaction velocity in reversible species is predominantly mass-transport-controlled because of their fast electron-transfer events. Spatial structuring of the solution near the electrode surface forces diffusion to dominate the transport phenomena even under convective fluid-flow, which in turn poses unique challenges to utilizing the maximum potential of reversible species by either electrode or fluid characteristics. We show Coulombic force gated molecular flux at the interface to target the transport velocity of reversible species; that in turn triggers a directional electrostatic current over the diffusion current within the reaction zone. In an iron-based redox flow battery, this gated molecular transport almost doubles the volumetric energy density without compromising the power capability.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectChemistryen_US
dc.subject2021-MAR-WEEK2en_US
dc.subjectTOC-MAR-2021en_US
dc.subject2021en_US
dc.titleCoulombic Force Gated Molecular Transport in Redox Flow Batteriesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleJournal of Physical Chemistry Lettersen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.