Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBretscher, Hope M.en_US
dc.contributor.authorAndrich, Paoloen_US
dc.contributor.authorTELANG, PRACHIen_US
dc.contributor.authorSINGH, ANUPAM KUMARen_US
dc.contributor.authorHARNAGEA, LUMINITAen_US
dc.contributor.authorSood, A. K.en_US
dc.contributor.authorRao, Akshayen_US
dc.date.accessioned2021-03-30T09:16:58Z
dc.date.available2021-03-30T09:16:58Z
dc.date.issued2021-03en_US
dc.identifier.citationNature Communications, 12, 1699.en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5734
dc.identifier.urihttps://doi.org/10.1038/s41467-021-21929-3en_US
dc.description.abstractThe layered chalcogenide Ta2NiSe5 has been proposed to host an excitonic condensate in its ground state, a phase that could offer a unique platform to study and manipulate many-body states at room temperature. However, identifying the dominant microscopic contribution to the observed spontaneous symmetry breaking remains challenging, perpetuating the debate over the ground state properties. Here, using broadband ultrafast spectroscopy we investigate the out-of-equilibrium dynamics of Ta2NiSe5 and demonstrate that the transient reflectivity in the near-infrared range is connected to the system’s low-energy physics. We track the status of the ordered phase using this optical signature, establishing that high-fluence photoexcitations can suppress this order. From the sub-50 fs quenching timescale and the behaviour of the photoinduced coherent phonon modes, we conclude that electronic correlations provide a decisive contribution to the excitonic order formation. Our results pave the way towards the ultrafast control of an exciton condensate at room temperature.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectElectronic properties and materialsen_US
dc.subjectPhase transitions and critical phenomenaen_US
dc.subjectQuantum fluids and solidsen_US
dc.subject2021-MAR-WEEK4en_US
dc.subjectTOC-MAR-2021en_US
dc.subject2021en_US
dc.titleUltrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleNature Communicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.