Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdler, Jeffrey D.en_US
dc.contributor.authorMISHRA, MANISHen_US
dc.date.accessioned2021-03-31T10:45:56Z
dc.date.available2021-03-31T10:45:56Z
dc.date.issued2021-06en_US
dc.identifier.citationJournal Fur Die Reine Und Angewandte Mathematik, 2021(775), 71-86.en_US
dc.identifier.issn1435-5345en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5769
dc.identifier.urihttps://doi.org/10.1515/crelle-2021-0010en_US
dc.description.abstractFor a connected reductive group G defined over a non-archimedean local field F, we consider the Bernstein blocks in the category of smooth representations of G(F). Bernstein blocks whose cuspidal support involves a regular supercuspidal representation are called regular Bernstein blocks. Most Bernstein blocks are regular when the residual characteristic of F is not too small. Under mild hypotheses on the residual characteristic, we show that the Bernstein center of a regular Bernstein block of G(F) is isomorphic to the Bernstein center of a regular depth-zero Bernstein block of G0(F), where G0 is a certain twisted Levi subgroup of G. In some cases, we show that the blocks themselves are equivalent, and as a consequence we prove the ABPS Conjecture in some new cases.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectMathematicsen_US
dc.subject2021-MAR-WEEK4en_US
dc.subjectTOC-MAR-2021en_US
dc.subject2021en_US
dc.titleRegular Bernstein blocksen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal Fur Die Reine Und Angewandte Mathematiken_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.