Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5769
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Adler, Jeffrey D. | en_US |
dc.contributor.author | MISHRA, MANISH | en_US |
dc.date.accessioned | 2021-03-31T10:45:56Z | |
dc.date.available | 2021-03-31T10:45:56Z | |
dc.date.issued | 2021-06 | en_US |
dc.identifier.citation | Journal Fur Die Reine Und Angewandte Mathematik, 2021(775), 71-86. | en_US |
dc.identifier.issn | 1435-5345 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5769 | |
dc.identifier.uri | https://doi.org/10.1515/crelle-2021-0010 | en_US |
dc.description.abstract | For a connected reductive group G defined over a non-archimedean local field F, we consider the Bernstein blocks in the category of smooth representations of G(F). Bernstein blocks whose cuspidal support involves a regular supercuspidal representation are called regular Bernstein blocks. Most Bernstein blocks are regular when the residual characteristic of F is not too small. Under mild hypotheses on the residual characteristic, we show that the Bernstein center of a regular Bernstein block of G(F) is isomorphic to the Bernstein center of a regular depth-zero Bernstein block of G0(F), where G0 is a certain twisted Levi subgroup of G. In some cases, we show that the blocks themselves are equivalent, and as a consequence we prove the ABPS Conjecture in some new cases. | en_US |
dc.language.iso | en | en_US |
dc.publisher | De Gruyter | en_US |
dc.subject | Mathematics | en_US |
dc.subject | 2021-MAR-WEEK4 | en_US |
dc.subject | TOC-MAR-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | Regular Bernstein blocks | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal Fur Die Reine Und Angewandte Mathematik | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.