Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorDey, Arijiten_US
dc.contributor.authorPODDAR, MAINAKen_US
dc.contributor.authorRayan, Stevenen_US
dc.date.accessioned2021-04-01T03:02:18Z
dc.date.available2021-04-01T03:02:18Z
dc.date.issued2021-04en_US
dc.identifier.citationIllinois Journal of Mathematics, 65(1), 181-190.en_US
dc.identifier.issn0019-2082en_US
dc.identifier.issn1945-6581en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5771
dc.identifier.urihttps://doi.org/10.1215/00192082-8827663en_US
dc.description.abstractStarting from the data of a nonsingular complex projective toric variety, we define an associated notion of toric co-Higgs bundle. We provide a Lie-theoretic classification of these objects by studying the interaction between Klyachko’s fan filtration and the fiber of the co-Higgs bundle at a closed point in the open orbit of the torus action. This can be interpreted, under certain conditions, as the construction of a coarse moduli scheme of toric co-Higgs bundles of any rank and with any total equivariant Chern class.en_US
dc.language.isoenen_US
dc.publisherDuke University Pressen_US
dc.subjectMathematicsen_US
dc.subject2021-MAR-WEEK4en_US
dc.subjectTOC-MAR-2021en_US
dc.subject2021en_US
dc.titleToric co-Higgs bundles on toric varietieen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleIllinois Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.