Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBANERJEE, DEBARGHAen_US
dc.contributor.authorCHAUDHURI, CHITRABHANUen_US
dc.date.accessioned2021-04-09T05:28:30Z
dc.date.available2021-04-09T05:28:30Z
dc.date.issued2021-03en_US
dc.identifier.citationIsrael Journal of Mathematics, 241, 583–622.en_US
dc.identifier.issn0021-2172en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5781
dc.identifier.urihttps://doi.org/10.1007/s11856-021-2107-3en_US
dc.description.abstractIn this paper, we compute the semi-stable models of modular curves X0(p2) for oddprimes p > 3 and compute the Arakelov self-intersection numbers of the relative dualizing sheaves for these models. We give two arithmetic applications of our computations. In particular, we give an effective version of the Bogomolov conjecture following the strategy outlined by Zhang and find the stable Faltings heights of the arithmetic surfaces corresponding to these modular curves.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectMathematicsen_US
dc.subject2021-APR-WEEK1en_US
dc.subjectTOC-APR-2021en_US
dc.subject2021en_US
dc.titleSemi-Stable Models of Modular Curves X0(p2) and Some Arithmetic Applicationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleIsrael Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.