Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKALELKAR, TEJASen_US
dc.contributor.authorPHANSE, ADVAITen_US
dc.date.accessioned2021-04-29T11:39:05Z
dc.date.available2021-04-29T11:39:05Z
dc.date.issued2021-03en_US
dc.identifier.citationDiscrete & Computational Geometry, 66, 809–830.en_US
dc.identifier.issn0179-5376en_US
dc.identifier.issn1432-0444en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5824
dc.identifier.urihttps://doi.org/10.1007/s00454-021-00283-7en_US
dc.description.abstractWe show that any two geometric triangulations of a closed hyperbolic, spherical, or Euclidean manifold are related by a sequence of Pachner moves and barycentric subdivisions of bounded length. This bound is in terms of the dimension of the manifold, the number of top dimensional simplexes, and bound on the lengths of edges of the triangulation. This leads to an algorithm to check from the combinatorics of the triangulation and bounds on lengths of edges, if two geometrically triangulated closed hyperbolic or low dimensional spherical manifolds are isometric or not.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectHauptvermutungen_US
dc.subjectGeometric triangulationen_US
dc.subjectPachner movesen_US
dc.subjectCombinatorial topologyen_US
dc.subject2021-APR-WEEK3en_US
dc.subjectTOC-APR-2021en_US
dc.subject2021en_US
dc.titleAn Upper Bound on Pachner Moves Relating Geometric Triangulationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDiscrete & Computational Geometryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.