Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2021-04-30T10:52:06Z
dc.date.available2021-04-30T10:52:06Z
dc.date.issued2021-03en_US
dc.identifier.citationAnnali di Matematica Pura ed Applicata, 200, 2333–2360.en_US
dc.identifier.issn0373-3114en_US
dc.identifier.issn1618-1891en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5848
dc.identifier.urihttps://doi.org/10.1007/s10231-021-01083-9en_US
dc.description.abstractIn this paper we prove higher order PoincarÌ© inequalities involving radial derivatives namely, ‰öÇHN|‰öàkr,HNu|2dvHN‰ä´(N‰öÕ12)2(k‰öÕl)‰öÇHN|‰öàlr,HNu|2dvHN for all u‰ööHk(HN), where underlying space is N-dimensional hyperbolic space HN, 0‰ä?l<k are integers and the constant (N‰öÕ12)2(k‰öÕl) is sharp. Furthermore we improve the above inequalities by adding Hardy-type remainder terms and the sharpness of some constants is also discussed.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectHigher order Poincar̩ inequalityen_US
dc.subjectPoincare-Hardy inequalityen_US
dc.subjectHyperbolic spaceen_US
dc.subject2021-APR-WEEK3en_US
dc.subjectTOC-APR-2021en_US
dc.subject2021en_US
dc.titleOn higher order Poincare inequalities with radial derivatives and Hardy improvements on the hyperbolic spaceen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAnnali di Matematica Pura ed Applicataen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.