Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5848
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ROYCHOWDHURY, PRASUN | en_US |
dc.date.accessioned | 2021-04-30T10:52:06Z | |
dc.date.available | 2021-04-30T10:52:06Z | |
dc.date.issued | 2021-03 | en_US |
dc.identifier.citation | Annali di Matematica Pura ed Applicata, 200, 2333–2360. | en_US |
dc.identifier.issn | 0373-3114 | en_US |
dc.identifier.issn | 1618-1891 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5848 | |
dc.identifier.uri | https://doi.org/10.1007/s10231-021-01083-9 | en_US |
dc.description.abstract | In this paper we prove higher order PoincarÌ© inequalities involving radial derivatives namely, ‰öÇHN|‰öàkr,HNu|2dvHN‰ä´(N‰öÕ12)2(k‰öÕl)‰öÇHN|‰öàlr,HNu|2dvHN for all u‰ööHk(HN), where underlying space is N-dimensional hyperbolic space HN, 0‰ä?l<k are integers and the constant (N‰öÕ12)2(k‰öÕl) is sharp. Furthermore we improve the above inequalities by adding Hardy-type remainder terms and the sharpness of some constants is also discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Higher order Poincar̩ inequality | en_US |
dc.subject | Poincare-Hardy inequality | en_US |
dc.subject | Hyperbolic space | en_US |
dc.subject | 2021-APR-WEEK3 | en_US |
dc.subject | TOC-APR-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | On higher order Poincare inequalities with radial derivatives and Hardy improvements on the hyperbolic space | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Annali di Matematica Pura ed Applicata | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.