Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAKTA, MOUSOMIen_US
dc.contributor.authorCHAKRABORTY, SOUPTIKen_US
dc.contributor.authorPucci, Patriziaen_US
dc.date.accessioned2021-05-21T09:13:25Z
dc.date.available2021-05-21T09:13:25Z
dc.date.issued2021-01en_US
dc.identifier.citationAdvances in Nonlinear Analysis, 10(1), 1086-1116.en_US
dc.identifier.issn2191-950Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5878
dc.identifier.urihttps://doi.org/10.1515/anona-2020-0171en_US
dc.description.abstractThis paper deals with existence and multiplicity of positive solutions to the following class of non-local equations with critical nonlinearity: {(-Delta)(s)u-gamma u/vertical bar x vertical bar(2s) = K(x)vertical bar u vertical bar 2*s(t)-2u/vertical bar x vertical bar t +f(x) in R-N,u is an element of (H)/Over dots (RN), where N > 2s, s 2 (0, 1), 0 is an element of t < 2 s < N and 2 * s (t) := 2( N-t) N-2 s. Here 0 < < N, s and N,s is the best Hardy constant in the fractional Hardy inequality. The coefficient K is a positive continuous function on RN, with K(0) = 1 = lim jxj!1 K(x). The perturbation f is a nonnegative nontrivial functional in the dual space. H s( RN) 0 of. H s( RN). We establish the prole decomposition of the Palais-Smale sequence associated with the functional. Further, if K >= 1 and kf k(. H s) 0 is small enough (but f 6 0), we establish existence of at least two positive solutions to the above equation.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectNonlocal equationsen_US
dc.subjectFractional Laplacianen_US
dc.subjectHardy-Sobolev Equationsen_US
dc.subjectProfile Decompositionen_US
dc.subjectPalais-Smale Decompositionen_US
dc.subjectEnergy Estimateen_US
dc.subjectPositive Solutionsen_US
dc.subjectMin-Max Methoden_US
dc.subject2021-MAY-WEEK3en_US
dc.subjectTOC-MAY-2021en_US
dc.subject2021en_US
dc.titleFractional Hardy-Sobolev equations with nonhomogeneous termsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAdvances in Nonlinear Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.