Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5879
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Becher, Karim Johannes | en_US |
dc.contributor.author | GUPTA, PARUL | en_US |
dc.date.accessioned | 2021-05-21T09:13:25Z | |
dc.date.available | 2021-05-21T09:13:25Z | |
dc.date.issued | 2021-04 | en_US |
dc.identifier.citation | Manuscripta Mathematica. | en_US |
dc.identifier.issn | 0025-2611 | en_US |
dc.identifier.issn | 1432-1785 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5879 | - |
dc.identifier.uri | https://doi.org/10.1007/s00229-021-01301-x | en_US |
dc.description.abstract | Over a global field any finite number of central simple algebras of exponent dividing m is split by a common cyclic field extension of degree m. We show that the same property holds for function fields of 2-dimensional excellent schemes over a henselian local domain of dimension one or two with algebraically closed residue field. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | 13J15 | en_US |
dc.subject | 16K20 | en_US |
dc.subject | 16S35 | en_US |
dc.subject | 19C30 | en_US |
dc.subject | 19D45 | en_US |
dc.subject | Brauer Group | en_US |
dc.subject | 2021-MAY-WEEK3 | en_US |
dc.subject | TOC-MAY-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | Strong linkage for function fields of surfaces | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Manuscripta Mathematica | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.