Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5882
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Krishna Das, B. | en_US |
dc.contributor.author | SAU, HARIPADA | en_US |
dc.date.accessioned | 2021-05-21T09:13:25Z | |
dc.date.available | 2021-05-21T09:13:25Z | |
dc.date.issued | 2021-04 | en_US |
dc.identifier.citation | Complex Analysis and Operator Theory, 15(3), 60. | en_US |
dc.identifier.issn | 1661-8254 | en_US |
dc.identifier.issn | 1661-8262 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5882 | |
dc.identifier.uri | https://doi.org/10.1007/s11785-021-01108-4 | en_US |
dc.description.abstract | This paper is an effort to continue the legacy of the classically successful theory of Toeplitz operators on the Hardy space over the unit disk to a new domain in Cd—the symmetrized polydisk. We obtain algebraic characterizations of Toeplitz operators, analytic Toeplitz operators, compact perturbation of Toeplitz operators and dual Toeplitz operators. We then revisit the operator theory of this domain considered first in Biswas and Shyam Roy (J Funct Anal 266:6224–6255, 2014), to study the generalized Toeplitz operators and find a commutant lifting type result. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Symmetrized polydisk | en_US |
dc.subject | Toeplitz operator | en_US |
dc.subject | Commutant lifting theorem | en_US |
dc.subject | 2021-MAY-WEEK3 | en_US |
dc.subject | TOC-MAY-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | Algebraic Properties of Toeplitz Operators on the Symmetrized Polydisk | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Complex Analysis and Operator Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.