Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5901
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYoussefi, Amiren_US
dc.contributor.authorShomroni, Itayen_US
dc.contributor.authorJOSHI, YASH J.en_US
dc.contributor.authorBernier, Nathan R.en_US
dc.contributor.authorLukashchuk, Antonen_US
dc.contributor.authorUhrich, Philippen_US
dc.contributor.authorQiu, Liuen_US
dc.contributor.authorKippenberg, Tobias J.en_US
dc.date.accessioned2021-05-28T06:10:35Z
dc.date.available2021-05-28T06:10:35Z
dc.date.issued2021-05en_US
dc.identifier.citationNature Electronics, 4, 326–332.en_US
dc.identifier.issn2520-1131en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5901
dc.identifier.urihttps://doi.org/10.1038/s41928-021-00570-4en_US
dc.description.abstractA major challenge to the scalability of cryogenic computing platforms is the heat load associated with the growing number of electrical cable connections between the superconducting circuitry and the room-temperature environment. Compared with electrical cables, optical fibres have significantly lower thermal conductivity and are widely used in modern telecommunications. However, optical modulation at cryogenic temperatures remains relatively unexplored. Here we report the cryogenic electro-optical readout of a superconducting electromechanical circuit using a commercial titanium-doped lithium niobate modulator. We demonstrate coherent spectroscopy by measuring optomechanically induced transparency and incoherent thermometry by encoding the mechanical sidebands in an optical signal. We also show that our modulators can maintain their room-temperature Pockels coefficient at 800 mK. Further optimization of the modulator design—for example, by using longer waveguides and materials with a higher Pockels coefficient—could reduce the added noise of our setup to similar levels as current semiconductor microwave amplifiers.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCharacterization and analytical techniquesen_US
dc.subjectElectrical and electronic engineeringen_US
dc.subjectQuantum metrologyen_US
dc.subjectQuantum opticsen_US
dc.subjectSuperconducting devicesen_US
dc.subject2021-MAY-WEEK4en_US
dc.subjectTOC-MAY-2021en_US
dc.subject2021en_US
dc.titleA cryogenic electro-optic interconnect for superconducting devicesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleNature Electronicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.